Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition.

نویسندگان

  • J G Krupnick
  • V V Gurevich
  • T Schepers
  • H E Hamm
  • J L Benovic
چکیده

Visual arrestin modulates the intracellular response of retinal rod cells to light by specifically binding to the phosphorylated light-activated form of the photoreceptor rhodopsin (P-Rh*). In order to characterize the molecular interaction between rhodopsin and arrestin, we have studied the ability of synthetic peptides from the proposed cytoplasmic loops of rhodopsin to inhibit arrestin binding. A third cytoplasmic loop peptide competed most effectively for arrestin binding to P-Rh*, exhibiting an IC50 of 34 microM, while a first cytoplasmic loop peptide weakly inhibited binding with an IC50 of approximately 1100 microM. The first and third cytoplasmic loop peptides also inhibited P-Rh* interaction with both ARR[delta (2-16)-404], an arrestin mutant that lacks residues 2-16, and ARR[1-191], a mutant that contains only the amino half of arrestin. However, the third loop peptide had an approximately 5-fold lower affinity at inhibiting the binding of ARR[1-191] to P-Rh*. While the first and third loop peptides also inhibited arrestin binding to light-activated rhodopsin and a truncated rhodopsin lacking its C-terminal sites of phosphorylation, the peptides modestly enhanced arrestin binding to phosphorylated dark rhodopsin. These results suggest that the third and, to a lesser extent, the first cytoplasmic loops of rhodopsin may play an important role in arrestin binding to light-activated forms of rhodopsin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.

Quenching of phototransduction in retinal rod cells involves phosphorylation of photoactivated rhodopsin by the enzyme rhodopsin kinase followed by binding of the protein arrestin. Although it has been proposed that the mechanism of arrestin quenching of visual transduction is via steric exclusion of transducin binding to phosphorylated light-activated rhodopsin (P-Rh*), direct evidence for thi...

متن کامل

Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin.

PURPOSE To determine whether substitution of the potential phosphorylation sites of bovine rhodopsin's carboxyl-terminal region with the acidic residues aspartic acid, glutamic acid, or cysteic acid promotes the activation of arrestin. METHODS Three peptide analogues of the 19-residue carboxyl-terminal region of rhodopsin (330-348) were synthesized: the fully phosphorylated peptide (7P-peptid...

متن کامل

Rhodopsin TM6 Can Interact with Two Separate and Distinct Sites on Arrestin: Evidence for Structural Plasticity and Multiple Docking Modes in Arrestin–Rhodopsin Binding

Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodo...

متن کامل

Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin.

Photoactivated rhodopsin is quenched upon its phosphorylation in the reaction catalyzed by rhodopsin kinase and the subsequent binding of a regulatory protein, arrestin. We have found that heparin and other polyanions compete with photoactivated, phosphorylated rhodopsin to bind arrestin (48-kDa protein, S-antigen). This is shown (a) by the suppression of stabilized metarhodopsin II; (b) by cha...

متن کامل

Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.

Arrestin blocks the interaction of rhodopsin with the G protein transducin (G(t)). To characterize the sites of arrestin that interact with rhodopsin, we have utilized a spectrophotometric peptide competition assay. It is based on the stabilization of the active intermediates metarhodopsin II (MII) and phosphorylated MII by G(t) and arrestin, respectively (extra MII monitor). The protocol invol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 5  شماره 

صفحات  -

تاریخ انتشار 1994